Ball Convergence for a Computationally Efficient Fifth-order Method for Solving Equations in Banach Space under Weak Conditions

نویسنده

  • Ioannis K. Argyros
چکیده

In the present paper, we consider a fifth order method considered in Jaiswal (2016) to solve equations in Banach space under weaker assumptions. Using the idea of restricted convergence domains we extend the applicability of the method considered by Jaiswal (2016). Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study. MSC: 65J20, 49M15, 74G20, 41A25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving System of Nonlinear Equations by using a New Three-Step Method

In this paper‎, ‎we suggest a fifth order convergence three-step method for solving system of nonlinear equations‎. ‎Each iteration of the method requires two function evaluations‎, ‎two first Fr'{e}chet derivative evaluations and two matrix inversions‎. ‎Hence‎, ‎the efficiency index is $5^{1/({2n+4n^{2}+frac{4}{3}n^{3}})}$‎, ‎which is better than that of other three-step methods‎. ‎The advant...

متن کامل

The Convergence Ball of Newton-like Methods in Banach Space and Applications

Under the hypothesis that the derivative satisfies some kind of weak Lipschitz condition, sharp estimates of the radii of convergence balls of Newton-like methods for operator equations are given in Banach space. New results can be used to analyze the convergence of other developed Newton iterative methods.

متن کامل

A unified local convergence for Chebyshev-Halley-type methods in Banach space under weak conditions

We present a unified local convergence analysis for Chebyshev-Halleytype methods in order to approximate a solution of a nonlinear equation in a Banach space setting. Our methods include the Chebyshev; Halley; super-Halley and other high order methods. The convergence ball and error estimates are given for these methods under the same conditions. Numerical examples are also provided in this stu...

متن کامل

Weak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces

‎In this paper‎, ‎we prove some theorems related to properties of‎ ‎generalized symmetric hybrid mappings in Banach spaces‎. ‎Using Banach‎ ‎limits‎, ‎we prove a fixed point theorem for symmetric generalized‎ ‎hybrid mappings in Banach spaces‎. ‎Moreover‎, ‎we prove some weak‎ ‎convergence theorems for such mappings by using Ishikawa iteration‎ ‎method in a uniformly convex Banach space.

متن کامل

Convergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations

In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016